A Survey on Quasi-Likelihood Estimation Approaches for Longitudinal Set-ups
نویسنده
چکیده
The Com-Poisson (CMP) model is one of the most popular discrete generalized linear models (GLMS) that handles both equi-, overand under-dispersed data. In longitudinal context, an integer-valued autoregressive (INAR(1)) process that incorporates covariate specification has been developed to model longitudinal CMP counts. However, the joint likelihood CMP function is difficult to specify and thus restricts the likelihood-based estimating methodology. The joint generalized quasi-likelihood approach (GQL-I) was instead considered but is rather computationally intensive and may not even estimate the regression effects due to a complex and frequently ill-conditioned covariance structure. This paper proposes a new GQL approach for estimating the regression parameters (GQL-III) that is based on a single score vector representation. The performance of GQL-III is compared with GQL-I and separate marginal GQLs (GQL-II) through some simulation experiments and is proved to yield equally efficient estimates as GQL-I and is far more computationally stable. Keywords—Longitudinal, Com-Poisson, Ill-conditioned, INAR(1), GLMS, GQL.
منابع مشابه
A Bayesian Nominal Regression Model with Random Effects for Analysing Tehran Labor Force Survey Data
Large survey data are often accompanied by sampling weights that reflect the inequality probabilities for selecting samples in complex sampling. Sampling weights act as an expansion factor that, by scaling the subjects, turns the sample into a representative of the community. The quasi-maximum likelihood method is one of the approaches for considering sampling weights in the frequentist framewo...
متن کاملThe Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways
The performance of many traffic control strategies depends on how much the traffic flow models have been accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive ...
متن کاملJoint modeling of Time to Event Data and Repeated Ordered Longitudinal Scores Subject to Linear Mixed Model
Longitudinal studies often receive joint information on time to some event and serial outcome measures. This demands a joint modeling of outcomes as well as cause specific survival time using the observed covariates. In many occasions, data not only involve repeated measures but are also collected on ordered categorical responses. Further in view of the longitudinal variation on the ordinal out...
متن کاملThe Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways
The performance of many traffic control strategies depends on how much the traffic flow models are accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive loop d...
متن کاملEstimating from cross-sectional categorical data subject to misclassification and double sampling: Moment-based, maximum likelihood and quasi-likelihood approaches
We discuss alternative approaches for estimating from cross-sectional categorical data in the presence of misclassification. Two parameterisations of the misclassification model are reviewed. The first employs misclassification probabilities and leads tomoment-based inference. The second employs calibration probabilities and leads tomaximum likelihood inference. We show that maximum likelihood ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015